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ABSTRACT 
For safe navigation through an environment, autonomous ground vehicles rely on 

sensory inputs such as cameras, LiDAR, and radar for detection and classification 

of obstacles and impassable terrain. These sensors provide data representing 3D 

space surrounding the vehicle. Often this data is obscured by dust, precipitation, 

objects, or terrain, producing gaps in the sensor field of view. These gaps, or 

occlusions, can indicate the presence of obstacles, negative obstacles, or rough 

terrain. Because sensors receive no data in these occlusions, sensor data provides 

no explicit information about what might be found in the occluded areas. To 

provide the navigation system with a more complete model of the environment, 

information about the occlusions must be inferred from sensor data. In this paper 

we show a probabilistic method for mapping point cloud occlusions in real-time 

and how knowledge of these occlusions can be integrated into an autonomous 

vehicle obstacle detection and avoidance system. 

 

1. INTRODUCTION  
Autonomous vehicles rely on exteroceptive sensors to 

gather information about the environment. Most sensor 

processing algorithms focus on what is explicitly presented in 

the sensor data. However, there is information to be garnered 

by what is inferred by the data. Occlusions fall into this 

category. Occlusions can be defined as a blockage which 

prevents a sensor from gathering data in a location. For 

example, occlusions can be seen as shadows in LiDAR data. 

While the sensor data itself doesn’t indicate what is in the 

occluded areas, occlusions can represent negative obstacles 

such as drop-offs or areas behind large obstacles. These areas 

are important to identify for autonomous vehicle obstacle 

detection and avoidance to work properly.  

Point cloud data generated from an autonomous vehicle by 

a 3D LiDAR, structured light, or stereo camera system 

contains information about the objects within the field of 

view. Due to the distribution of the points in each point cloud, 

the current sensor field of view is inferred. If the current 

sensor field of view does not match an ideal sensor field of 

view, it may indicate that something may be occluding the 

sensor. We present an algorithm which models the probability 

of sensor occlusion in a map by incorporating an ideal sensor 

field-of-view model compared against sensor data over time. 

There is significant interest in the literature for detecting 

terrain traversability (including occlusions such as negative 

obstacles) using exteroceptive sensors, as described by 

Papadakis [1]. There are some methods of occlusion and/or 

negative obstacle detection using thermal information from an 

IR camera [2], synthetic aperture radar [3], or stereo vision 

[4], but we choose to focus our method on point cloud sensors, 

especially LiDAR. Heckman, et al. describe a method that 

uses LiDAR ray-tracing past detections to identify occluded 

areas [5]. This method is relatively slow (1 Hz). There are 

methods using gaps in LiDAR point geometry to model 

negative obstacles or occlusions [6-9]. Shange, et al. chose to 

compare ideal flat-world LiDAR scan lines to observed scan 

lines [10]. Our method does not rely on observed point or gap 

geometry and does not assume any particular point cloud 
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sensor scanning pattern. We instead assume a probabilistic 

sensor field-of-view model (which generalizes to 3D LiDAR, 

structured light, stereo cameras, and other point cloud 

sensors) and updates the occlusion map using a probabilistic 

model. 

The remainder of the paper is as follows. Section 2 outlines 

the sensor field-of-view model, the occlusion mapping 

algorithm, and how it can be integrated into an obstacle 

detection and avoidance system. Section 3 describes 

experimental results and discussion for both sensor field-of-

view models and running the occlusion mapping algorithm on 

an autonomous vehicle. Section 4 offers a conclusion and 

future work. 

2. OCCLUSION MAPPING ALGORITHM 
Our occlusion mapping algorithm models the area around 

the vehicle as a grid map where each grid cell represents the 

probability of occlusion from one or more sensors mounted 

on the vehicle. Updating this occlusion probability map 

requires knowledge of the sensor field of view (FOV). We 

choose to represent the sensor FOV as a probability mass 

function centered around the vehicle. We describe the sensor-

FOV model in Section 2.1, followed by how the occlusion 

map probabilities are updated with the sensor-FOV model in 

Section 2.2. We then describe how this knowledge is 

integrated into an obstacle detection and avoidance system in 

Section 2.3. 

We use an inertially-based coordinate system for the 

occlusion mapping, denoted by row-column grid coordinates 
(𝑟, 𝑐), and a vehicle-centric coordinate system for the sensor 

field-of-view model, denoted by row-column grid coordinates 
(�̂�, �̂�). 

The subsequent discussion assumes only one sensor data 

stream into this algorithm. This can be easily generalized to 

any number of sensors by running the update equation for 

each sensor at their respective scene scan rate. Each sensor 

retains its own FOV model but share the occlusion probability 

map. 

2.1. Sensor Field-of-View Model 
We describe a probabilistic model for probability of 

detection within an ideal sensor FOV in this section. We do 

this by defining a 2D detection probability grid map 𝐺. We 

use 𝑔�̂�,𝑐̂ to denote the detection probability in the grid cell at 

index (�̂�, �̂�) relative to the vehicle. This map is in the vehicle 

frame, assuming the sensor mounting is static and the sensor 

scanning pattern is repeating over some small time period Δ𝑇. 

The grid map 𝐺 represents a probability mass function (pmf) 

of getting a sensor return in each grid cell. That is, ∑ 𝑔�̂�,𝑐̂𝐺 =

1.0. It can be viewed simply as a point density function.  

There are several methods for populating 𝐺. These include 

using empirical data to estimate each cell value using 

normalized histogram counts or simulating the sensor field of 

view based on an ideal model. In either case, a 2D plane at 

ground height represents an ideal, non-occluded world the 

sensor FOV model is based on. 

With the pmf grid 𝐺, we desire to know the probability that 

a grid cell at index (�̂�, �̂�) is detected by any point when 𝑁 

points are sensed in a scan of the area. We form another grid 

𝑆, the cell scan detection probability grid, to store this 

information with each cell denoted as 𝑠�̂�,𝑐̂. This grid is 

populated from the information in 𝐺, and we assume each 

point in a FOV scan is sensed independently of one another. 

This can be modeled by a Binomial distribution with 

parameters N and 𝑔�̂�,𝑐̂, where it determines the probability of 

a single cell detected in any of 𝑁 point samples. Because these 

points may not be truly independent of one another, an 

aggressiveness scale factor 𝛼 is introduced to help tune the 

system for reasonable results. This aggressiveness factor 

merely changes the effective number of points sampled in a 

scan of the scene. With the aggressiveness factor, the cell scan 

detection probability for each cell in grid 𝑆 is given by 

𝑠�̂�,𝑐̂ = 1 − (1 − 𝑔�̂�,𝑐̂)
𝛼𝑁

.  

While the grids 𝐺 and 𝑆 are defined in a vehicle-frame, the 

subsequent section uses the cell scan detection probability in 

the inertial frame. Using the vehicle pose at a given time, it is 

trivial to convert from vehicle frame coordinates (�̂�, �̂�) to 

corresponding inertial frame coordinates (𝑟, 𝑐). It is 

understood when referring to 𝑔�̂�,𝑐̂ (or 𝑠�̂�,𝑐̂), it is in reference to 

vehicle frame coordinates, and when referring to 𝑔𝑟,𝑐 (or 𝑠𝑟,𝑐) 

it is referring to the same cell, but in inertial frame coordinates 

with the current vehicle pose in mind. In this way, the grids 𝐺 

and 𝑆 need only to be computed once and stored. When 

querying between inertial-frame and vehicle-frame grid 

coordinates, various types of sampling interpolation may be 

used, such as nearest neighbor or bilinear interpolation. 

2.2. Occlusion Probability Map 
We define a 2D occlusion probability grid map 𝑀. We use 

𝑚𝑟,𝑐
𝑘 = 𝑃(Cell𝑟,𝑐 = Occluded | 𝑧𝑟,𝑐

𝑘−1, 𝑚𝑟,𝑐
𝑘−1, 𝑠𝑟,𝑐) to denote 

the occlusion probability for grid cell at index (𝑟, 𝑐) in the 

inertial frame at time 𝑘. Each cell’s occlusion probability 𝑚𝑟,𝑐
𝑘  

is based on its prior occlusion probability 𝑚𝑟,𝑐
𝑘−1, the currently 

observed data 𝑧𝑟,𝑐
𝑘 , and the cell scan detection probability 𝑠𝑟,𝑐. 

We assume that each cell’s occlusion probability is spatially-

independent from one another, and each cell is an independent 

Markov model depending only on current measurements and 

previous state. Each cell in the map is initialized to some 

small, non-zero occlusion probability 𝜖. The resolution of this 

grid need not match the resolution of the corresponding sensor 

FOV grid 𝐺. 

Updates to the map 𝑚 occur every Δ𝑇 seconds at time  𝑘 =

⌊
𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙

Δ𝑇
⌋, where Δ𝑇 is the scene scan period. Between 

updates, incoming point clouds are transformed from sensor 
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frame into the inertial frame and concatenated into a single 

point cloud 𝐶𝑘. 

At each update 𝑘, we determine which cells are currently 

observed based on the inertially-referenced point cloud 𝐶𝑘. 

We form a binary indicator list 𝑧𝑟,𝑐
𝑘 . For each point in 𝒄𝑖 ∈ 𝐶𝑘, 

we find the corresponding grid cell index (𝑟, 𝑐) and add  

𝑧𝑟,𝑐
𝑘 = 1 to the list. Cells that fall within the vehicle bounding 

box are ignored. Once the list of observed cells is created, all 

other cells are known to be currently unobserved, 𝑧𝑟,𝑐
𝑘 = 0. 

These need not explicitly be added to the list as their value is 

known by exclusion. There is some discussion if all points in 

𝐶𝑘should automatically be counted as observed. For example, 

perhaps only points approximately at ground level should be 

counted as observed. Or needing to observe two or more 

points per cell. For this paper, we choose to count a cell as 

observed if at least one point falls within the cell and does not 

fall within the vehicle bounding box. 

Once the current binary observations are determined, the 

grid cell probabilities are updated. For each grid cell 𝑚𝑟,𝑐
𝑘  in 

the map 𝑚, we examine its corresponding current observation 

indicator 𝑧𝑟,𝑐
𝑘 . If the cell is currently observed (𝑧𝑟,𝑐

𝑘 = 1), this 

cell is not occluded and the probability of occlusion is set to 

zero, 𝑚𝑟,𝑐
𝑘 = 0. If the cell is not currently observed (𝑧𝑟,𝑐

𝑘 = 0), 

there are two options: the cell has already been observed or 

the cell has never been observed. If the cell has already been 

observed, it already has zero occlusion probability and this is 

propagated, 𝑚𝑟,𝑐
𝑘 = 𝑚𝑟,𝑐

𝑘−1 = 0. If the cell has never been 

observed, we run the update equation. 

The update equation examines the previous occlusion 

probability 𝑚𝑟,𝑐
𝑘−1 and the scan cell detection probability 𝑠𝑟,𝑐. 

We assume that successive 𝑠𝑟,𝑐 are independent. As described 

above, this may not always be the case. If the cell scan 

detection probabilities are indeed independent (or assumed to 

be independent through a heuristic described below), the 

update equation is performed. If the cell scan detection 

probability at time 𝑘 is not independent of the cell scan 

detection probability at time 𝑘 − 1, the update equation does 

not apply, and the previous value propagates through, 𝑚𝑟,𝑐
𝑘 =

𝑚𝑟,𝑐
𝑘−1. The update equation is shown in Equation (1). 

𝑚𝑟,𝑐
𝑘 = 1 − (1 − 𝑠𝑟,𝑐)(1 − 𝑚𝑟,𝑐

𝑘−1)                 (1) 

This update equation describes a sequence of Bernoulli 

random variables that are independent but not identically-

distributed due to the changing parameter 𝑠𝑟,𝑐. This equation 

is written in a recursive format and represents the probability 

that a cell is not observed over a sequence of observation 

probabilities. If the cell is not in the sensor field of view, then 

𝑠𝑟,𝑐 = 0, and the probability simply propagates, 𝑚𝑟,𝑐
𝑘 =

𝑚𝑟,𝑐
𝑘−1. This decision flow is shown in Figure 1. 

Because the sensor FOV model does not (typically) 

represent a truly random process, at least at our level of 

abstraction, if a vehicle is stationary, successive 𝑠𝑟,𝑐 may not 

be independent. We create an independence heuristic which 

allows us to approximate when successive 𝑠𝑟,𝑐 are 

independent. Because a sensor’s detections are usually 

spatially-repeatable (i.e. when a sensor is stationary, it gets 

returns from approximately the same grid cells in each scan), 

we choose to make this independence heuristic based on 

sensor movement. Since the previous iteration update, if the 

sensor has moved some fractional (e.g. half) amount of the 

grid cell size then the successive 𝑠𝑟,𝑐 values are assumed to be 

independent and Equation (1) applies. If this movement is not 

detected, we assume no independence and the cells in map 𝑀 

are not updated per the description above. A similar rule can 

be created for heading or rotational changes. 

At each update, the map is sent to an obstacle detection and 

avoidance system providing information about occlusions. 

Occlusion information can help infer non-drivable areas. 

 
Figure 1. Flowchart for cell update process. 

2.3. Integration into an Obstacle Detection 
System 

The obstacle detection and avoidance system on an 

autonomous vehicle typically includes the use of a 2D 

drivability grid 𝐷. This grid represents if a vehicle can safely 

traverse some area. The cells nearby a projected or assigned 

path are checked for drivability. If not drivable, the obstacle 

avoidance system is configured to either stop for or maneuver 

around the non-drivable area. In this section we describe how 

the occlusion map can represent non-drivable areas. 

We choose to represent the occlusion map probabilities as 

four states: (1) Observed, (2) Unknown, (3) Not Likely 

Occluded, and (4) Likely Occluded. The mapping between 

each cell occlusion probability 𝑚𝑟,𝑐
𝑘  and these states are 

shown in Table 1.  
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Table 1. Occlusion Probability to Occlusion State Mapping 

Cell State Probability Range 

Observed 𝑚𝑟,𝑐
𝑘 = 0 

Unknown 𝑚𝑟,𝑐
𝑘 = 𝜖 

Not Likely Occluded 𝜖 < 𝑚𝑟,𝑐
𝑘 < 𝑜𝑡ℎ𝑟𝑒𝑠ℎ 

Likely Occluded 𝑜𝑡ℎ𝑟𝑒𝑠ℎ ≤ 𝑚𝑟,𝑐
𝑘 ≤ 1 

 

The threshold 𝑜𝑡ℎ𝑟𝑒𝑠ℎ which differentiates Not Likely 

Occluded from Likely Occluded is chosen such that 𝜖 <
𝑜𝑡ℎ𝑟𝑒𝑠ℎ < 1, and is tunable for the sensor, operating speed, 

and other configuration parameters. In most applications, we 

choose to indicate the Likely Occluded state as non-drivable 

with the other states as drivable. A state-transition model is 

shown in Figure 2. 

 
Figure 2. Occlusion state transition model for each cell. States Not 

Likely Occluded and Likely Occluded are combined in this 

diagram because they are only differentiated by a user-defined 

threshold. 

The probability-to-state mapping operates on each cell 

individually. However, because small occluded areas may not 

be considered non-drivable for a particular application, spatial 

voting or filtering can take place. Different methods such as 

k-nearest-neighbors classification [11], the number of Likely 

Occluded cells in a Moore Neighborhood, or other techniques 

can be used to ensure that only larger Likely Occluded areas 

are marked as non-drivable in the drivability grid. In our 

implementation, we choose to do spatial voting based on the 

number of Likely Occluded cells in the Moore Neighborhood. 

3. EXPERIMENTAL RESULTS AND 
DISCUSSION 

These experiments were performed at Autonomous 

Solutions, Inc. (ASI) facilities in Petersboro, UT. We show 

how the sensor field of view is modeled for an Ouster OS-1 

64 LiDAR sensor mounted on the Ford Escape in Section 3.1. 

We also show the distances a moderate drop-off is detected 

by this algorithm in Section 3.2, using a Velodyne VLP16 

sensor.  

The occlusion mapping algorithm is implemented in C++, 

including some code/structure optimizations allowing for 

real-time operation. The computer running the occlusion 

mapping algorithm is a 64-bit i7-3720-QM 2.60 GHz 8-core 

machine with 7.4 GiB memory running Ubuntu 16.04. The 

algorithm, implemented in C++ with a ROS2/DDS [12] 

communication layer, ran with an average of 7.3% CPU 

(based on data from the top task manager utility). This shows 

reasonable CPU load for our algorithm. The algorithm 

complexity is primarily based on the number of grid cells 

within the sensor field of view. We ran the algorithm at 10 

Hz, matching the Ouster and Velodyne sensor scene scan rate. 

3.1. Ouster OS-1 64 Sensor Field-of-View 
Model 

In this experiment, we show both empirical FOV modeling 

and simulated distribution modeling for the Ouster OS-1 64 

sensor. 

We first show empirical modeling with real data. This is 

done by collecting representative data while driving through 

an open area. The point cloud is transformed into the vehicle 

frame by means of its mounting information. Points within the 

vehicle bounding box are ignored. The remaining points are 

inserted into a 2D histogram corresponding to the pmf grid 𝐺, 

then normalized according to the total number of points. This 

forms the pmf grid. 

We collected data from the Ouster OS-1 64 sensor mounted 

on a Ford Escape driving in an open field. The terrain was 

smooth, but the vehicle rolled and pitched considerably. We 

selected 102 scans from the data to form this model. An 

example point cloud from the data collection is shown in 

Figure 3. The grid resolution is 0.25 meters. We show an 

image representing 𝐺 in Figure 4. We create the cell scan 

detection probability over a scan using 𝑁 = 65,536 and 𝛼 =
1.0. This is shown in Figure 5. 

We now show the simulated sensor modeling for the Ouster 

OS-1 64 LiDAR. It has a vertical scan line range of −16.6° ≤
𝛾 ≤ 16.6° and a horizontal scan range of −180° ≤ 𝜃 < 180° 
[13]. We choose to restrict the horizontal scan range to only 

ahead of the sensor −90° ≤ 𝜃 < 90°. With only half the 

horizontal scan range, we expect 655,360 points per second. 

At a scan rate of 10 Hz, we have 𝑁 = 65,536 points per scan. 

Its maximum range at 10% reflectivity is 40 meters. Because 

we are generating the grid map 𝐺 in vehicle frame, we require 

knowledge of the mounting rotation and translation (𝑅, 𝒕) of 

the sensor relative to the vehicle frame.  
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Figure 3. Example point cloud from the Ouster sensor, colored by 

radial angle. Note the blind spots due to roof mounting brackets. 

The approximate vehicle bounding box (yellow) is shown, with 

the vehicle facing to the right. 

 

Figure 4. PMF (grid 𝐺) from empirical Ouster data. Note the 

shadows present, caused by the mounting brackets. The 

approximate vehicle bounding box (yellow) is shown, with the 

vehicle facing to the right. The side of the grid is approximately 

80 meters. 

 
Figure 5. Cell scan detection probability map (grid 𝑆) for 

empirical Ouster data. Note the shadows present, caused by the 

mounting brackets. The approximate vehicle bounding box 

(yellow) is shown, with the vehicle facing to the right. The side 

of the grid is approximately 80 meters (same spatial scale as 

Figure 4). 

We uniformly sample 𝑛𝛾 and 𝑛𝜃 angles at angular 

differences of Δγ and Δ𝜃 in the vertical and horizontal 

directions, respectively, to get 𝑛 = 𝑛𝛾𝑛𝜃 rays within the 

simulated field of view. Note that these values do not 

necessarily correspond to the sensor laser count or data rate. 

Each unit-length ray 𝒓𝑖 is formed by transforming the 

spherical coordinates to Euclidean coordinates, 𝒓𝑖 =

[
 
 
 
 sin (

𝜋

2
− 𝛾) cos (𝜃)

sin (
𝜋

2
− 𝛾) sin (𝜃)

cos (
𝜋

2
− 𝛾) ]

 
 
 
 

. For each ray we desire to know where 

it intersects the ground plane relative to the vehicle frame. 

This can be done by using the vector representation of the line 

𝒍𝑖 coincident with the ray, 𝒍𝑖(𝑑) = 𝒕 + 𝑑𝑅𝒓𝑖 where 𝑑 ∈
[𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥] and represents the distance along the ray from 

the sensor. The ground intersection occurs when the 𝑧-

component of 𝒍𝑖 is zero. The corresponding value 𝑑 can be 

found in closed-form. Because not all rays intersect the 

ground plane, we ignore any points with values of 𝑑 that are 

greater than the maximum range 𝑑𝑚𝑎𝑥 , smaller than the 

minimum range 𝑑𝑚𝑖𝑛 , negative, or infinite. We also remove 

any points that fall within the vehicle bounding box. This 
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leaves a valid ground point 𝒑𝑖 representing where the ray 𝒓𝑖 

intersects the ground. 

With the valid ground points 𝒑𝑖 we form a 2D histogram 

from these points according to their horizontal positions in the 

grid 𝐺, then normalize each histogram bin according to the 

total number of valid points. This forms the desired pmf grid 

𝐺. 

We simulate the Ouster OS-1 64 sensor using this method. 

This was done with Δ𝛾 = 0.001°, Δ𝜃 = 0.001°, 𝒕 = [
3.0
0.0
2.0

], 

and pitched 7° down from horizontal. The grid resolution is 

0.25 meters. We show an image representing 𝐺 in Figure 6. 

We create the cell scan detection probability using 𝑁 =
65,536 and 𝛼 = 1.0. This is shown in Figure 7. 

Comparing the results of the simulated modeling to the 

empirical modeling shows significant similarities. The 

simulated model shows a smoother surface than the empirical 

model. The empirical model naturally models things like 

mounting bracket shadows but is limited to specific vehicle-

sensor configurations. 

 

Figure 6. PMF (grid 𝐺) of simulated Ouster FOV. The 

approximate vehicle bounding box (yellow) is shown, with the 

vehicle facing to the right. The side of the grid is approximately 

80 meters. 

  

 
Figure 7. Cell scan detection probability map (grid S) for 

simulated Ouster FOV. The approximate vehicle bounding box 

(yellow) is shown, with the vehicle facing to the right. The side 

of the grid is approximately 80 meters (same spatial scale as 

Figure 6). 

3.2. Drop-Off Detection on Autonomous 
Ford Escape with Velodyne VLP16 

We have done extensive testing and analysis of this 

algorithm with a Velodyne VLP16 mounted on a Ford Escape 

equipped with the ASI vehicle automation kit. We quantify 

the utility of this algorithm with the distance a moderate drop-

off is detected as occluded head-on at various speeds. The 

selected drop-off is approximately eight feet down at a nearly-

undrivable slope. This is shown in Figure 8. The approach to 

the drop-off is shown in Figure 9. 

Three manually-driven runs were made at the drop-off 

while recording the output of this algorithm. The vehicle 

started approximately 60 meters uphill from the drop-off and 

accelerated to speeds of approximately 5 mph, 10 mph, and 

15 mph, slowing down in time to stop for the edge of the drop-

off. The algorithm used 𝛼 = 0.02 with 1.0-meter grid cells 

and 𝑜𝑡ℎ𝑟𝑒𝑠ℎ = 0.5 with a simulated VLP16 field-of-view 

model. The algorithm output was post-processed to identify 

the approximate distance from the vehicle control point 

(center of rear axle) at which the algorithm first indicated the 

drop-off was occluded. These results are shown in Table 2. 

The drop-off was successfully identified as an occlusion in 

each case over 20 meters away. The occlusion map is shown 

in Figure 10. With reasonable braking and good friction, this 
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should give an autonomous system plenty of time to slow or 

stop for the drop-off at these speeds.  

 

 
Figure 8. Drop-off used for the test. 

 
Figure 9. Approach to the drop-off. The drop-off is highlighted. 

Table 2. Occlusion detection distance at various speeds. 

Approximate Speed Occlusion Detection Distance 

5 mph 25.1 meters 

10 mph 22.3 meters 

15 mph 21.2 meters 

 

 

Figure 10. Occlusion map for 15 mph run after drop-off is detected 

as Likely Occluded. Green grid dots show Observed cells; red grid 

dots show Likely Occluded cells. Unknown and Not Likely 

Occluded cells are not shown. Current VLP16 points are colored 

in a blue. The vehicle bounding box is in yellow. Note how the 

unobserved area “within” the hillside (left of the vehicle) are also 

marked as occluded in addition to the drop-off (forward of the 

vehicle). 

4. CONCLUSION AND FUTURE WORK 
This algorithm shows a robust input to an obstacle detection 

and avoidance system. It is robust because it does not process 

the data implicitly and has a relatively simple probabilistic 

model. It quickly and accurately identifies large occlusions, 

typical of negative obstacles and areas behind large objects, 

and works with a variety of point cloud sensors. It does not 

rely on machine learning or deep learning to perform its tasks 

and needs very little configuration to become operable. One 

other benefit is that when a sensor becomes obscured due to 

dust, foliage, or precipitation, or has a sensing or 

communication failure, this algorithm identifies areas that 

have not been sensed and can warn the vehicle when no data 

is observed in its operating area or path. 

Future work includes investigating better independence 

heuristics for sequential field-of-view measurements. 

Incorporating a forgetting factor when a cell has not been 

observed for some time may also be useful; this would help 

emphasize more recent occlusions in a changing environment.  
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